
Lighting sources and technology have experienced 
a revolution in the last 15–20 years. Lighting sources and 
technology, especially in non-commercial or industrial 
illumination applications, have traditionally been slow to 
change [1]. In most homes, the incandescent bulb and Edison 
socket have been omnipresent. In the past 10 years, we have 
seen significant use of other technologies, such as compact 
fluorescent lamps (CFLs), replacing incandescent sources. 
However, this transition has often been driven by legislation, 
which has focused on energy-efficient sources instead of 
consumer desire for different light sources. The general user 
quickly noted the difference in the quality of CFL source 
but not necessarily in the specifics of its power spectrum. 
Simultaneously, the development and performance of high 
brightness light-emitting diodes (LEDs) have experienced 
tremendous advances [2]. The coupling of a blue-light LED 
with a phosphor has also been used to produce a white light 
source, the white-light LED. This solid-state f luorescent 
analog has become known as solid-state lighting (SSL). This 
approach is now considered the next generation of illumina-
tion due to the many inherent and potential advantages over 
current technologies.

In addition to use for general illumination, LEDs quickly 
became the choice for mobile devices, such as smart phones 
[3]. The small size of LEDs and the limited screen size make 
them ideal for these applications. The potential for the use of 
LEDs for backlighted liquid crystal displays (LCDs) in laptop 
computers was also quickly realized. This transition was 
driven by the fragility of the microfluorescent lamps used for 

illumination and consumer desire for thinner screens. LEDs 
have now become the dominant technology for backlighted 
tablet displays, such as iPads and e-readers, and large LCD 
television sets. This now means that blue light prevails in 
red, green, and blue (RGB) and SSL illumination systems 
that did not exist a decade ago. The ways in which people 
read have also changed. Light is now being used directly for 
illumination in smart phones, tablets, and readers instead of 
for reflection, which is typical for reading from paper.

The white-light LED (i.e., the most common type of 
LED) is essentially a bichromatic source that couples the 
emission from a blue LED (peak of emission around 450–470 
nm with a full width at half max of 30–40 nm) [4] with a 
yellow phosphor (peak of emission around 580 nm with a 
full width at half max of 160 nm) that appears white to the 
eye when viewed directly [5]. The specific pump wavelength 
of the phosphor in the range 450–470 nm depends critically 
on the absorption properties of the phosphor. Although the 
white-light LED can be considered the SSL analog of the 
fluorescent source, the power spectrum of the white-light 
LED is considerably different from traditional, fluorescent, 
or incandescent white light sources [6] (Figure 1).

Early commercial devices lacked sophistication, adopting 
the currently available LED technology that was small, 
350×350 mm2, and operated at low drive currents, typically 
20 mA, producing 1–16 mW of power. The last decade has 
seen the scaling of LEDs to larger areas, 1×1 μm2, and higher 
drive currents of >350 mA with significantly increased power 
output >1,000 mW [2]. During this period, LED devices 
were also optimized for use in illumination applications, and 
reflected from a surface instead of emitted directly.
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In addition, white-light LEDs degrade over time 
primarily through bleaching of phosphors so that they no 
longer efficiently absorb blue light [7]. This shifts the color 
temperature of the device over time, with a corresponding 
change in the color-rendering index but, more importantly, an 
increasing blue emission from the device with time.

In this review, we summarize the current knowledge of 
the effects of blue light on the regulation of physiologic func-
tion and the effects of blue light exposure on ocular health. 
Finally, we discuss the available data to determine whether 
long-term exposure to blue light is safe or whether additional 
studies are needed to fully understand the effects of blue light 
exposure on ocular health.

Non-image-forming photoreception: In mammals, photore-
ception occurs only in the retina [8] by three types of photore-
ceptor: cones, rods, and the intrinsically photosensitive retinal 
ganglion cells (ipRGCs). The classical photoreceptors (e.g., 
rods and cones) are mostly responsible for the image-forming 
vision, whereas the ipRGCs play a major role in non-image-
forming photoreception, that is, the photoreceptive system 
that regulates circadian photic entrainment, pupillary light 
response, and other important biologic functions (Figure 2).

The idea that the mammalian retina is capable of 
non-image-forming photoreception emerged during the 1990s 
when a series of studies indicated that mice lacking rod photo-
receptors (rd/rd) have a normal phase response curve (PRC) 
to light [9], with an action spectrum that peaks around 480 nm 
[10]. This result suggested that a photo pigment different from 
rhodopsin (λmax 498 nm), short wavelength sensitive opsin 
(λmax 460 nm), and middle wavelength sensitive opsin (λmax 
508 nm) [11] was responsible for the entrainment of circadian 
rhythms. Additional studies reported that mice lacking rods 
and cones were still capable of synchronizing their circadian 
rhythms to light-dark cycles [12], thus demonstrating that an 
undiscovered photo pigment/photoreceptor in the mammalian 
retina was responsible for the photoentrainment of circadian 
rhythms.

The most likely candidate to emerge as the circadian 
retinal photo pigment is a mammalian homolog of Xenopus 
melanopsin (aka Opn4) [13-15]. In mammals, melanopsin 
mRNA (and protein) is expressed only in a small population 
(about 3–5%) of the RGCs [14,16] that are directly photosensi-
tive and have an absorption peak around 470–480 nm [17-19]. 
These RGCs express pituitary adenylate cyclase-activating 
polypeptide (PACAP) [20] and form the retinohypothalamic 

Figure 1. A comparison of the 
power spectrum of a standard 
white-light LED, a tricolor f luo-
rescent lamp, and an incandescent 
source. The radically different 
power spectrums can look similar 
when viewed directly by the eye, 
irrespective of how much blue 
emission is present.
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tract (RHT) [16,21]. The RHT is responsible for conveying 
the light information from RGCs to the part of the brain that 
controls circadian rhythms within the whole body [22,23]. 
The RGCs that express melanopsin were named intrinsically 
photosensitive RGCs (ipRGCs), and these cells were no longer 
intrinsically photosensitive in melanopsin knockout (KO) 
mice, although the cell number, morphology, and projections 
remained unchanged [24].

Additional studies have also shown that melanopsin KO 
mice entrained to light-dark photoperiods, albeit the response 
to light was attenuated in the KO animals as the magnitude 
of the phase-shift is about half (40%) of that of wild-type 
mice at each of the three non-saturating irradiance levels [25]. 
A saturating white light pulse also produced a diminished 
phase shift in the KO animals [26]. The length of the free-
running period that follows the exposure to constant light is 
reduced (to about 55–65% of that of controls) in melanopsin 
KO animals [25,26].

Melanopsin has also been implicated in regulation of the 
pupillary light reflex (PLR). Transgenic mice lacking rod and 
cone photoreceptors (rdcl) retain a PLR, and this response is 
driven by a photo pigment with peak sensitivity of around 

479 nm [27]. Melanopsin KO animals showed a PLR indistin-
guishable from that of the wild-type mice at low irradiances, 
but at high irradiances, the reflex was incomplete. This result 
suggests that the melanopsin-associated system and the clas-
sical rod/cone system are complementary functions [28,29]. 
Thus, the current view is that no single photoreceptor type is 
necessary for the synchronization of circadian rhythms with 
external light-dark cycles [30,31].

Finally, mice with the melanopsin gene ablated only 
in ipRGCs have normal outer retinal function but lack 
non-image-forming visual responses, such as circadian 
photoentrainment, light modulation of activity, and PLR 
[32]. Thus, the ipRGCs represent the site of integration of 
non-image-forming photo responses in mammals.

Further studies have also shown that melanopsin-based 
photoreception is involved in the modulation of sleep [33-36] 
and mood and learning [37], and recent data have also indi-
cated that melanopsin-based photoreception may be involved 
in the regulation of metabolism [38]. Finally, it has been 
reported that loss of the melanopsin gene abolishes circa-
dian control in some parameters of cone electroretinogram, 
causing significant attenuation of the diurnal variation in cone 

Figure 2. In addition to the classical 
photoreceptors (rods and cones), 
ipRGCs are present in the retina. 
Recent studies have shown that 
at least two types of intrinsically 
photosensitive retinal ganglion 
cells (ipRGCs) have been identi-
fied: M1 and M2. Most of the M1 
cells project to the suprachiasmatic 
nucleus (SCN) of the hypothalamus 
whereas the number of M1 and 
M2 projecting to the olivary 
pretectal nucleus (OPN) is similar 
(55% from M1 cells versus 45% 
from M2 cells). The M1 cells are 
considerably smaller but respond 
with significantly larger depolar-
izations and light-induced currents 
than do the M2 cells. Other neural 
targets of ipRGCs not shown in 
the figure include the preoptic 
area, sub-paraventricular zone, 
anterior hypothalamic nucleus, 
lateral hypothalamus, medial 

amygdaloid nucleus, lateral habenula, lateral geniculate nucleus (dorsal division), bed nucleus of the stria terminalis, periaqueductal gray, 
and superior colliculus. OS=outer segments; IS=inner segments; ONL=outer nuclear layer; OPL=outer plexiform layer; INL=inner nuclear 
layer; IPL=inner plexiform layer; GCL=ganglion cell layer; from [31] with permission.
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vision [39]. Melanopsin signaling may influence intraretinal 
signaling by acting on dopaminergic neurons [40]. Therefore, 
these data suggest melanopsin-dependent regulation of visual 
processing within the retina.

Melanopsin also plays an important role in mediating 
human circadian rhythms. Several studies have reported 
that in humans, the action spectra for melatonin suppres-
sion has a lambda max (λmax) of around 460 nm, suggesting 
that melanopsin is a key player in the photic regulation of 
melatonin levels [41-43]. Additional studies have also shown 
that blue light in the range of 460–480 nm is more effective 
compared to monochromatic light of 555 nm in phase-shifting 
the human circadian clock [44,45]. Finally, a recent study 
expanded these previous results by showing that light in the 
555 nm range may significantly affect the synchronization 
of the circadian system to light exposure of short duration or 
to low irradiance, whereas light in the 460 nm range is more 
effective in phase-shifting the circadian system than expo-
sure to light of longer duration and higher irradiance [46]. 
Additional studies have also shown that exposure to blue light 
can increase alertness [47-50] and stimulate cognitive func-
tions [51-53]. A recent study reported that exposure to light-
emitting e-readers at bedtime may negatively affect sleep and 
the circadian system [54]. Finally, blue light may also be used 
to treat seasonal affective disorders [55], and mutations in 
the melanopsin gene may increase the susceptibility to devel-
oping seasonal affective disorders [56,57]. However, another 
study reported that exposure to blue-enriched light was less 
effective compared to full-spectrum light in the treatment of 
seasonal affective disorder [58].

With age, the lens becomes more yellowish, and thus, the 
spectrum of blue light transmission dramatically decreases 
through the years. It is suspected that one reason older indi-
viduals experience sleep problems is the lack of blue light 
during the daytime. Ayaki et al. [59] reported that after cata-
ract extraction, sleep quality improved dramatically because 
more blue light could pass through the intraocular lens. In 
addition, there has been a discussion on whether a clear or 
yellow lens is preferable [60]. Of course, the yellow lens may 
protect the retina, but the clear lens provides more blue light 
during the day, providing better quality of sleep [61]. Consis-
tent with this result, Sletten et al. [62] reported that in older 
people, acute exposure to blue light, but not to green light, 
significantly decreased their alertness and suppressed their 
sleep and melatonin production compared to young people. 
However, another study reported that in older patients with 
decreased lens transmittance, melatonin was not significantly 
suppressed following blue light exposure [43]. Thus, whether 
the yellowing of the lens associated with aging really affects 

the non-image-forming photoreception is still a matter of 
debate.

Light-induced damage to the retina: Several investigations 
have shown that exposure to light of specific wavelengths 
or intensity may induce severe damage to the retina [63,64]. 
This type of damage is called light-induced damage. Light 
can induce damage via three mechanisms: photomechanical, 
photothermal, and photochemical. Photomechanical damage 
is due to a rapid increase in the amount of energy captured 
by the RPE, which may cause irreversible damage to the 
RPE and lead to photoreceptor damage. This type of retinal 
damage depends on the amount of energy absorbed and 
not on the spectral composition of the light. Photothermal 
damage occurs when the retina and the RPE are exposed to 
brief (100 ms to 10 s) but intense light that induce a significant 
increase in the temperature of these tissues [63,64].

A more common type of retinal/RPE damage is photo-
chemical damage, which occurs when the eyes are exposed 
to light of high intensity in the visible range (390–600 nm). 
The current view suggests that there are two distinct types 
of photochemical damage. The first type is associated with 
short but intense exposure to light affecting the RPE, and the 
second type is associated with longer but less intense light 
exposure, affecting the outer segment of the photoreceptors. 
Short (up to 12 h) exposure to blue light may induce damage 
in the RPE of the rhesus monkey [65], and a clear relationship 
has been found between the extent of the damage and the 
oxygen concentration [66,67]. The fact that many different 
antioxidants can reduce the damage suggests that this type 
of damage is associated with oxidative processes [68,69]. 
Experimental data suggest that lipofuscin is the chromophore 
involved in the mediation of light-induced retinal damage 
following the exposure to blue light [70-73].

The second type of light-induced photochemical damage 
occurs with longer (12–48 h) but less intense light exposure. 
This type of damage was initially observed in albino rats [74] 
but has also been observed in other species. The cones seem 
to be more vulnerable compared to the rods [75]. Several 
lines of evidence suggest that the visual photo pigments 
(e.g., rhodopsin and cone opsins) are involved in this type 
of damage. Early studies [76-78] also provided evidence that 
the action spectrum for light-induced photoreceptor damage 
is similar to the absorption spectrum of rhodopsin, but 
later studies indicated that blue light (400–440 nm) might 
be more damaging [79-81]. Grimm et al. [82] provided an 
explanation for this phenomenon, demonstrating that in 
vivo bleached rhodopsin may be regenerated not only via 
a metabolic pathway (e.g., via the visual cycle) but also via 
a photochemical reaction called photoreversal of bleaching 
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[83] that is most effective with blue light. Photoreversal of 
bleaching augments the capability of rhodopsin molecules to 
absorb photons by several orders of magnitude, thus allowing 
the molecules to reach the critical number of photons required 
to induce damage in the retinal cells [84].

This process can further increase the potential produc-
tion of reactive oxygen species (ROS); thus, the oxidative 
damage can lead to the accumulation and build-up of lipo-
fuscin in the RPE. The build-up of lipofuscin in the RPE can 
affect the ability of the RPE to provide nutrients to the photo-
receptors, affecting photoreceptor viability [85]. Moreover, 
when lipofuscin absorbs blue light, the material becomes 
phototoxic, which can lead to further damage in the RPE 
and in the photoreceptors [70]. The data from our laboratory 
indicate that in albino rats, exposure to blue light (λmax 474 

nm, 1×10−1 μW/cm2) acutely suppressed melatonin levels [6] 
while exposure to blue light for 4 h/day for 30 days did not 
produce significant effects on photoreceptor viability (Figure 
3). However, this treatment produced a small (10–20%) but 
significant reduction in the levels of melanopsin and short 
wavelength opsin mRNAs in rats exposed to white or green 
(λmax513 nm) light (Figure 4).

In this context, two recent studies on the effect of blue 
light exposure on the RPE and cone-like cells (661W, murine 
photoreceptor-derived cells [86]) should be mentioned. In the 
first study, Arnault et al. [87] reported that in the primary 
porcine RPE, exposure to light with irradiance similar to that 
of natural sunlight, that is, light in the range of 415–455 nm, 
was the most effective in reducing cell viability.

Figure 3. Top panels. The exposure to blue light (λmax 474), green light (λmax 513), or fluorescent light at the intensity of 1×10−1 μW/cm2 for 4 
h/day for 30 days did not produce a significant change in the number of cells in the photoreceptor layers of the Sprague-Dawley rats (n=6; 
see [121] for details about the methods used to quantify cells in the photoreceptor layer). Lower panels. The exposure to blue or green 
light-emitting diodes (LEDs) for 4 h in the middle of the day did not induce apoptosis. Terminal deoxynucleotidyl transferase-mediated 
uridine 5′-triphosphate-biotin nick end labeling (TUNEL) assay: 4- to 6-week-old Sprague-Dawley rats (n=6) were anesthetized (75 mg/kg 
ketamine and 23 mg/kg xylazine), kept on heating pads (37 °C), and exposed to blue or green light for 4 h. The pupils were dilated with 1% 
atropine and 2.5% phenylephrine eye drops 45 min before the light exposure. Rats were then killed 16 h after the exposure to blue light or 
green light. The eyes were explanted and fixed using freshly prepared 4% polyformaldehyde in PBS, pH 7.4 for 20 min at room temperature. 
They were washed 3X with PBS, permeabilized with freshly prepared 0.1% Triton X-100 in 0.1% sodium citrate for 2 min on ice (2–8 °C), 
and then the TUNEL reaction was performed according to the instructions included in the manual (In Situ cell Death Detection kit). The 
slides were incubated in a humidified container for 60 min at 37 °C in the dark. Slides were rinsed 3X with PBS, and samples were analyzed 
under a fluorescence microscope (Zeiss Axioskop).
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In the second study, Kuse et al. [88] reported that 661W 
cells are more sensitive to light-induced damage when 
exposed to light emitted by blue (464 nm) LEDs than when 
exposed to green (522 nm) or white LEDs (wavelength peak 
at 456 and 553 nm) of the same intensity (0.38 mW/cm2). 
The exposure to blue light, unlike the exposure to white and 
green LEDs, also produced a significant increase in ROS and 
induced cell damage. Similar results were also observed in 
primary retinal cells [88]. These data support the idea that 
exposure to blue light in the range of 400–470 nm (even at 
low levels) may damage photoreceptors and retinal pigment 
epithelium cells.

Although most studies have focused on the acute effect 
of light exposure, several have also investigated the cumu-
lative effect of light. For example, Noell [89] reported that 
a single 5 min exposure to light did not induce significant 
damage in photoreceptor cells, whereas a series of 5 min 
exposures led to significant photoreceptor damage. Further-
more, the time between exposures affects the cumulative 
effect of light [90-92]. In some cases, intermittent light 
exposure may produce even more pronounced damage than 
an equivalent amount of light in a single exposure [93]. In 
addition, the type of illumination to which the animals had 
been exposed before the experimental treatment influenced 

Figure 4. Different light treatments 
did not affect rhodopsin mRNA 
levels (one-way ANOVA, p>0.1). 
Exposure to blue light (λmax 474) 
at the intensity of 1×10−1 μW/cm2 
for 4 h/day for 30 days produced 
significant changes in the mRNA 
levels of short wavelength sensi-
tive (SW) opsin, melanopsin, and 
medium wavelength sensitive opsin 
(* one-way ANOVA followed by 
Holm-Sidak tests, p<0.05). Rats 
were exposed to blue, green, or 
white light-emitting diodes (LEDs) 
every day (4 h) for 30 days in the 
middle of the day (11:00 to 15:00) 
and then returned to a 12 h:12 h 
light-dark cycle. The intensity of 
the light during the light phase of 
the 12 h:12 h light-dark cycle was 
about 400–450 lux. Every day, 
the pupils were dilated with 1% 
atropine and 2.5% phenylephrine 
eye drops 45 min before exposure 
to blue, green, or white light-
emitting diodes (LEDs). After 30 
days, the rats were killed, and the 
retinas were explanted, immedi-
ately frozen, and stored at −80 °C. 
mRNA was then extracted, and 
mRNA levels were measured using 
real-time quantitative PCR (qPCR; 
see [122] for details about primers 
and qPCR conditions).
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the extent of the retinal damage following light exposure. For 
example, rats raised in complete darkness showed greater 
susceptibility to light-induced retinal damage [89], and rats 
raised in an 800 lux light-dark cycle were more resistant to 
light-induced retinal damage compared to animals raised in 
a 5 lux light-dark cycle [94]. Finally, light-induced damage to 
photoreceptors increases with age. The exposure to light that 
might affect adult animals might not induce retinal damage 
in young animals [95]. In this context, with age, superoxide 
dismutase 1 (SOD1) and protective enzymes do not function 
as well due to zinc deficiency. SOD1 does not function well 
because the enzyme activity is controlled by zinc. Imamura et 
al. have shown that even with normal light that contains some 
blue light, fluorescent light damaged the retina tremendously 
in the SOD1 knockout mouse, which is similar to an aging 
mouse [96]. However, nothing happened in the normal mouse. 
The protective mechanism of the retina is important. From 
that point of view, the protective function of lutein, or blue-
blocking pigment, on the retina is also considered. Ozawa et 
al. published research showing that when lutein was given, 
retina photodamage was alleviated [97].

Finally, the severity of light-induced retinal damage 
changes with the time of the day [98-102]. For example, rats 
are three to four times more susceptible to light damage at 
night (01:00) than during the day (09:00 and 17:00). The 
circadian dependency of light-induced photoreceptor damage 
appears to involve mechanisms that control cAMP and c-fos 
levels (see [63] for a review), both of which are under the 
control of the retinal circadian clock [103,104]. Exposure to 
blue light during the night might have more negative effects 
compared to the same exposure during the daytime. However, 
in this case, this assumption is based on the experimental 
data obtained from nocturnal rodents. Thus, it is difficult to 
determine whether light-induced retinal damage has a daily 
rhythm in humans, and further studies on diurnal animal 
models (e.g., non-human primates) are required to address 
this important point.

Experimental evidence indicates that wavelengths in the 
blue part of the spectrum (400–490 nm) can induce damage 
in the retina, and although the initial damage following expo-
sure to blue light may be confined to the RPE, a damaged 
RPE eventually leads to photoreceptor death. Although 
most studies on the effects of blue light have focused on the 
mechanisms responsible for the damage to the photorecep-
tors following an acute exposure to high intensity light, some 
studies have reported that sub-threshold exposure to blue 
light can also induce damage in photoreceptors [105-107]. 
In addition, several authors have proposed that the amount 
of blue light received during an individual’s entire lifespan 

can be an important factor in the development of age-related 
macular degeneration (AMD). The use of lenses (intra- and 
extraocular) that block blue light (“blue-blockers”) may 
provide some protection against the development of AMD 
[60,108].

The mechanism through which long-term exposure 
to blue light may induce photoreceptor damage is mostly 
unknown. Several studies have indicated lipofuscin (absorp-
tion peak around 450 nm) is a possible mediator of the risk 
associated with long-term exposure to blue light–induced 
retinal damage [109,110]. Lipofuscin accumulates in the RPE 
in the form of granules located in the lysosomes of the RPE. 
The formation of lipofuscin begins in photoreceptors’ outer 
segments as a byproduct of the degradation of rod photore-
ceptor discs [105]. When lipofuscin absorbs blue light, ROS 
are produced, and these free radicals are responsible for the 
oxidative damage that occurs in the retina. The number of 
reactive oxygen species produced by lipofuscin is directly 
related to the spectral composition of the light, and it steadily 
decreases from 400 to 490 nm [73]. The accumulation of lipo-
fuscin in the RPE, particularly in the macula, has been linked 
to photoreceptor death and to AMD [109]. Furthermore, the 
amount of lipofuscin present in the RPE increases with age 
(i.e., the amount of lipofuscin is low in young and high in old 
animals); thus, the potential for blue light to damage the retina 
may increase with age [111]. Finally, it has been reported that 
chronic exposure to blue light may accelerate photoreceptor 
degeneration in an animal model in the study of retinal degen-
eration [112].

Thus, experimental evidence obtained from different 
experimental models indicates that exposure to blue light 
in the 470–490 nm range may be less damaging to the eye 
compared to blue light in the 400–460 nm range. We believe 
that the development of LEDs with a peak emission of around 
470–490 nm may represent an important advancement in the 
safety of LEDs for ocular health [6] (Figure 3).

Light exposure and age-related macular degeneration in 
humans: A series of studies in many animal models have 
shown that exposure to blue light may represent a risk for the 
development of AMD or other retinal pathologies [113,114]. 
However, the real risk from artificial light (white or blue) 
exposure in humans is difficult to assess, since light therapy 
has been in use for only a few years and in a small number of 
individuals. In addition, individual susceptibility to blue light 
damage varies significantly among individuals, making the 
assessment of the risk associated with repeated exposure to 
blue light in the etiology of AMD difficult.

Previous epidemiological studies have indicated that 
chronic exposure to visible and blue light may be a cofactor 
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in the development of AMD [115-117]. However, Darzin et 
al. [118] found no significant relationships between blue light 
and the development of AMD. Okuno et al. [119] evaluated 
the blue-light hazards from many different light sources and 
reported that the exposure (even for less than a minute) to 
blue light from the sun, arc-welding lamps, and the arc of 
discharge lamps is hazardous to the retina, whereas the expo-
sure to blue light from fluorescent lamps or LEDs does not 
pose a significant hazard.

Thus, it is clear that many different factors are involved 
in the pathogenesis of AMD. This observation, together with 
the limited data in terms of number of subjects or length 
of treatment, makes it difficult to predict the association 
between blue light exposure and the development of AMD.

Finally, ultraviolet (UV) light is a risk factor for age-
related macular degeneration. UV is mostly blocked by the 
cornea or lens; therefore, only visible light can penetrate the 
eye and reach the retina. A recent study by Narimatsu et al. 
[120] conducted with an animal model reported that blocking 
UV light and blue light with yellow-tinted intraocular lenses 
materials (400–450 nm) could protect the retina [120]. Thus, 
reducing the amount of blue light reaching the retina in the 
range 400–450 nm may also be important for the protection 
of the retina.

Conclusions: The use of blue light is becoming increasingly 
prominent in our society, and a large segment of the world 
population is now subjected to daily exposure (from a few 
minutes to several hours) of artificial light at an unusual time 
of the day (night). Because light has a cumulative effect and 
many different characteristics (e.g., wavelength, intensity, 
duration of the exposure, time of day), it is important to 
consider the spectral output of the light source to minimize 
the danger that may be associated with blue light exposure. 
Thus, LEDs with an emission peak of around 470–480 nm 
should be preferred to LEDs that have an emission peak 
below 450 nm. Although we are convinced that exposure to 
blue light from LEDs in the range 470–480 nm for a short to 
medium period (days to a few weeks) should not significantly 
increase the risk of development of ocular pathologies, this 
conclusion cannot be generalized to a long-term exposure 
(months to years). Finally, we believe that additional studies 
on the safety of long-term exposure to low levels of blue light 
are needed to determine the effects of blue light on the eye.
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